Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Arch Allergy Immunol ; 185(5): 489-502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38253027

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in a prolonged multisystem disorder termed long COVID, which may affect up to 10% of people following coronavirus disease 2019 (COVID-19). It is currently unclear why certain individuals do not fully recover following SARS-CoV-2 infection. SUMMARY: In this review, we examine immunological mechanisms that may underpin the pathophysiology of long COVID. These mechanisms include an inappropriate immune response to acute SARS-CoV-2 infection, immune cell exhaustion, immune cell metabolic reprogramming, a persistent SARS-CoV-2 reservoir, reactivation of other viruses, inflammatory responses impacting the central nervous system, autoimmunity, microbiome dysbiosis, and dietary factors. KEY MESSAGES: Unfortunately, the currently available diagnostic and treatment options for long COVID are inadequate, and more clinical trials are needed that match experimental interventions to underlying immunological mechanisms.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Disbiose/imunologia , Autoimunidade
2.
Nutrients ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631304

RESUMO

Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiata, Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35−81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.


Assuntos
Microbioma Gastrointestinal , Alga Marinha , Austrália , Bactérias , Clostridiales/genética , Carboidratos da Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Inulina/farmacologia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Prebióticos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
3.
Mar Drugs ; 19(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201794

RESUMO

Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.


Assuntos
Microbioma Gastrointestinal , Alga Marinha , Organismos Aquáticos , Humanos , Prebióticos
4.
Mar Drugs ; 14(4)2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27110798

RESUMO

The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article.


Assuntos
Antibacterianos/farmacologia , Fatores Biológicos/farmacologia , Microalgas/metabolismo , Alga Marinha/metabolismo , Animais , Antozoários/metabolismo , Antibacterianos/metabolismo , Bactérias/metabolismo , Fatores Biológicos/metabolismo , Diatomáceas/metabolismo , Ecossistema , Ácidos Graxos/metabolismo , Humanos , Biologia Marinha/métodos , Moluscos/metabolismo , Peptídeos/metabolismo , Polissacarídeos/metabolismo , Poríferos/metabolismo , Terpenos/metabolismo , Urocordados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...